面象对象
Java 的写法
MainActivity.this
Kotlin 的写法
this@MainActivity
Java 的写法
MainActivity.class
Kotlin 的写法
MainActivity::class.java
Java 的写法
public class MainActivity extends AppCompatActivity {
}
Kotlin 的写法(在 Kotlin 中被继承类必须被 open 关键字修饰)
class MainActivity : AppCompatActivity() {
}
Java 的写法
public interface Callback {
void onSuccess();
void onFail();
}
Kotlin 的写法(Kotlin接口方法里面是可以自己实现,这里就不再演示了)
interface Callback {
fun onSuccess()
fun onFail()
}
匿名内部类
Java 的写法
new Callback() {
@Override
public void onSuccess() {
}
@Override
public void onFail() {
}
};
Kotlin 的写法
object:Callback {
override fun onSuccess() {
}
override fun onFail() {
}
}
内部类
Java 的写法
public class MainActivity extends AppCompatActivity {
public class MyTask {
}
}
Kotlin 的写法
class MainActivity : AppCompatActivity() {
inner class MyTask {
}
}
内部类访问外部类同名变量
Java 的写法
String name = "CurvedBowZhang";
public class MyTask {
String name = "ZJX";
public void show() {
System.out.println(name + "---" + MainActivity.this.name);
}
}
Kotlin 的写法
var name = "CurvedBowZhang"
inner class MyTask {
var name = "ZJX"
fun show() {
println(name + "---" + this@MainActivity.name)
}
}
Java 的写法
public abstract class BaseActivity extends AppCompatActivity implements Runnable {
abstract void init();
}
Kotlin 的写法
abstract class BaseActivity : AppCompatActivity(), Runnable {
abstract fun init()
}
数据类型
Java 的写法
int i = 1;
long l = 2;
boolean b = true;
float f = 0;
double d = 0;
char c = 'A';
String s = "text";
Kotlin 的写法
var i : Int = 1
var l : Long = 2
var b : Boolean = true
var f : Float = 0F
var d : Double = 0.0
var c : Char = 'A'
var s : String = "text"
// 更简洁点可以这样,自动推倒类型
var i = 1
var l = 2
var b = true
var f = 0F
var d = 0.0
var c = 'A'
var s = "text"
Java 的写法
if ("" instanceof String) {
}
Kotlin 的写法
if ("" is String) {
}
Java 的写法
int number = 100;
System.out.println(String.format("商品数量有%d", number));
Kotlin 的写法
var number = 100
println("商品数量有${number}")
// 换种简洁的写法
var number = 100
println("商品数量有$number")
// 如果不想字符串被转义可以使用\$
var number = 100
println("商品数量有\$number")
Java 的写法
String s1 = "text";
String s2 = "text";
if (s1.equals(s2)) {
}
Kotlin 的写法(Kotlin 对字符串比较的写法进行优化了,其他类型对象对比还是要用 equals 方法)
var s1 = "text"
var s2 = "text"
if (s1 == s2) {
}
Java 的写法
int[] array1 = {1, 2, 3};
float[] array2 = {1f, 2f, 3f};
String[] array3 = {"1", "2", "3"};
Kotlin 的写法
val array1 = intArrayOf(1, 2, 3)
val array2 = floatArrayOf(1f, 2f, 3f)
val array3 = arrayListOf("1", "2", "3")
函数
Java 的写法
public void test(String message) {
}
Kotlin 的写法(Unit 跟 void 一样效果)
fun test(message : String) : Unit {
}
// 在 Kotlin 可以省略 Unit 这种返回值
fun test(message : String) {
}
Java 的写法
public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(@Nullable Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
}
}
Kotlin 的写法
class MainActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
}
}
扩展函数是 Kotlin 用于简化一些代码的书写产生的,其中有 let、with、run、apply、also 五个函数
let 函数
在函数块内可以通过 it 指代该对象。返回值为函数块的最后一行或指定return表达式
一般写法
fun main() {
val text = "CurvedBowZhang"
println(text.length)
val result = 1000
println(result)
}
let 写法
fun main() {
val result = "CurvedBowZhang".let {
println(it.length)
1000
}
println(result)
}
最常用的场景就是使用let函数处理需要针对一个可null的对象统一做判空处理
mVideoPlayer?.setVideoView(activity.course_video_view)
mVideoPlayer?.setControllerView(activity.course_video_controller_view)
mVideoPlayer?.setCurtainView(activity.course_video_curtain_view)
mVideoPlayer?.let {
it.setVideoView(activity.course_video_view)
it.setControllerView(activity.course_video_controller_view)
it.setCurtainView(activity.course_video_curtain_view)
}
又或者是需要去明确一个变量所处特定的作用域范围内可以使用
with 函数
前面的几个函数使用方式略有不同,因为它不是以扩展的形式存在的。它是将某对象作为函数的参数,在函数块内可以通过 this 指代该对象。返回值为函数块的最后一行或指定return表达式
定义 Person 类
class Person(var name : String, var age : Int)
一般写法
fun main() {
var person = Person("CurvedBowZhang", 100)
println(person.name + person.age)
var result = 1000
println(result)
}
with 写法
fun main() {
var result = with(Person("CurvedBowZhang", 100)) {
println(name + age)
1000
}
println(result)
}
适用于调用同一个类的多个方法时,可以省去类名重复,直接调用类的方法即可,经常用于Android中RecyclerView中onBinderViewHolder中,数据model的属性映射到UI上
override fun onBindViewHolder(holder: ViewHolder, position: Int){
val item = getItem(position)?: return
holder.nameView.text = "姓名:${item.name}"
holder.ageView.text = "年龄:${item.age}"
}
override fun onBindViewHolder(holder: ViewHolder, position: Int){
val item = getItem(position)?: return
with(item){
holder.nameView.text = "姓名:$name"
holder.ageView.text = "年龄:$age"
}
}
run 函数
实际上可以说是let和with两个函数的结合体,run函数只接收一个lambda函数为参数,以闭包形式返回,返回值为最后一行的值或者指定的return的表达式
一般写法
var person = Person("CurvedBowZhang", 100)
println(person.name + "+" + person.age)
var result = 1000
println(result)
run 写法
var person = Person("CurvedBowZhang", 100)
var result = person.run {
println("$name + $age")
1000
}
println(result)
适用于let,with函数任何场景。因为run函数是let,with两个函数结合体,准确来说它弥补了let函数在函数体内必须使用it参数替代对象,在run函数中可以像with函数一样可以省略,直接访问实例的公有属性和方法,另一方面它弥补了with函数传入对象判空问题,在run函数中可以像let函数一样做判空处理,这里还是借助 onBindViewHolder 案例进行简化
override fun onBindViewHolder(holder: ViewHolder, position: Int){
val item = getItem(position)?: return
holder.nameView.text = "姓名:${item.name}"
holder.ageView.text = "年龄:${item.age}"
}
override fun onBindViewHolder(holder: ViewHolder, position: Int){
val item = getItem(position)?: return
item?.run {
holder.nameView.text = "姓名:$name"
holder.ageView.text = "年龄:$age"
}
}
apply 函数
从结构上来看apply函数和run函数很像,唯一不同点就是它们各自返回的值不一样,run函数是以闭包形式返回最后一行代码的值,而apply函数的返回的是传入对象的本身
一般写法
val person = Person("CurvedBowZhang", 100)
person.name = "ZJX"
person.age = 50
apply 写法
val person = Person("CurvedBowZhang", 100).apply {
name = "ZJX"
age = 50
}
整体作用功能和run函数很像,唯一不同点就是它返回的值是对象本身,而run函数是一个闭包形式返回,返回的是最后一行的值。正是基于这一点差异它的适用场景稍微与run函数有点不一样。apply一般用于一个对象实例初始化的时候,需要对对象中的属性进行赋值。或者动态inflate出一个XML的View的时候需要给View绑定数据也会用到,这种情景非常常见。特别是在我们开发中会有一些数据model向View model转化实例化的过程中需要用到
mRootView = View.inflate(activity, R.layout.example_view, null)
mRootView.tv_cancel.paint.isFakeBoldText = true
mRootView.tv_confirm.paint.isFakeBoldText = true
mRootView.seek_bar.max = 10
mRootView.seek_bar.progress = 0
使用 apply 函数后的代码是这样的
mRootView = View.inflate(activity, R.layout.example_view, null).apply {
tv_cancel.paint.isFakeBoldText = true
tv_confirm.paint.isFakeBoldText = true
seek_bar.max = 10
seek_bar.progress = 0
}
多层级判空问题
if (mSectionMetaData == null || mSectionMetaData.questionnaire == null || mSectionMetaData.section == null) {
return;
}
if (mSectionMetaData.questionnaire.userProject != null) {
renderAnalysis();
return;
}
if (mSectionMetaData.section != null && !mSectionMetaData.section.sectionArticles.isEmpty()) {
fetchQuestionData();
return;
}
kotlin的apply函数优化
mSectionMetaData?.apply {
//mSectionMetaData不为空的时候操作mSectionMetaData
}?.questionnaire?.apply {
//questionnaire不为空的时候操作questionnaire
}?.section?.apply {
//section不为空的时候操作section
}?.sectionArticle?.apply {
//sectionArticle不为空的时候操作sectionArticle
}
also 函数
also函数的结构实际上和let很像唯一的区别就是返回值的不一样,let是以闭包的形式返回,返回函数体内最后一行的值,如果最后一行为空就返回一个Unit类型的默认值。而also函数返回的则是传入对象的本身
fun main() {
val result = "CurvedBowZhang".let {
println(it.length)
1000
}
println(result) // 打印:1000
}
fun main() {
val result = "CurvedBowZhang".also {
println(it.length)
}
println(result) // 打印:CurvedBowZhang
}
适用于let函数的任何场景,also函数和let很像,只是唯一的不同点就是let函数最后的返回值是最后一行的返回值而also函数的返回值是返回当前的这个对象。一般可用于多个扩展函数链式调用
总结
通过以上几种函数的介绍,可以很方便优化kotlin中代码编写,整体看起来几个函数的作用很相似,但是各自又存在着不同。使用的场景有相同的地方比如run函数就是let和with的结合体
协程
子任务协作运行,优雅的处理异步问题解决方案
协程实际上就是极大程度的复用线程,通过让线程满载运行,达到最大程度的利用CPU,进而提升应用性能
在当前 app module 中配置环境和依赖(因为现在协程在 Kotlin 中是实验性的)
kotlin {
experimental {
coroutines 'enable'
}
}
dependencies {
implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-core:0.20'
implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-android:0.20'
}
协程的三种启动方式
runBlocking:T
launch:Job
async/await:Deferred
runBlocking
runBlocking 的中文翻译:运行阻塞。说太多没用,直接用代码测试一下
println("测试是否为主线程" + (Thread.currentThread() == Looper.getMainLooper().thread))
println("测试开始")
runBlocking {
println("测试是否为主线程" + (Thread.currentThread() == Looper.getMainLooper().thread))
println("测试延迟开始")
delay(20000) // 因为 Activity 最长响应时间为 15 秒
println("测试延迟结束")
}
println("测试结束")
17:02:08.686 System.out: 测试是否为主线程 true
17:02:08.686 System.out: 测试开始
17:02:08.688 System.out: 测试是否为主线程 true
17:02:08.688 System.out: 测试延迟开始
17:02:28.692 System.out: 测试延迟结束
17:02:28.693 System.out: 测试结束
runBlocking 运行在主线程,过程中 App 出现过无响应提示,由此可见 runBlocking 和它的名称一样,真的会阻塞当前的线程,只有等 runBlocking 里面的代码执行完了才会执行 runBlocking 外面的代码
launch
launch 的中文翻译:启动。甭管这是啥,直接用代码测试
println("测试是否为主线程" + (Thread.currentThread() == Looper.getMainLooper().thread))
println("测试开始")
launch {
println("测试是否为主线程" + (Thread.currentThread() == Looper.getMainLooper().thread))
println("测试延迟开始")
delay(20000)
println("测试延迟结束")
}
println("测试结束")
17:19:17.190 System.out: 测试是否为主线程 true
17:19:17.190 System.out: 测试开始
17:19:17.202 System.out: 测试结束
17:19:17.203 System.out: 测试是否为主线程 false
17:19:17.203 System.out: 测试延迟开始
17:19:37.223 System.out: 测试延迟结束
async
async 的中文翻译:异步。还是老套路,直接上代码
测试的时候是主线程,但是到了 launch 中就会变成子线程,这种效果类似 new Thread(),有木有?和 runBlocking 最不同的是 launch 没有执行顺序这个概念
println("测试是否为主线程" + (Thread.currentThread() == Looper.getMainLooper().thread))
println("测试开始")
async {
println("测试是否为主线程" + (Thread.currentThread() == Looper.getMainLooper().thread))
println("测试延迟开始")
delay(20000)
println("测试延迟结束")
}
println("测试结束")
17:29:00.694 System.out: 测试是否为主线程 true
17:29:00.694 System.out: 测试开始
17:29:00.697 System.out: 测试结束
17:29:00.697 System.out: 测试是否为主线程 false
17:29:00.697 System.out: 测试延迟开始
17:29:20.707 System.out: 测试延迟结束
这结果不是跟 launch 一样么?那么这两个到底有什么区别呢?,让我们先看一段测试代码
println("测试是否为主线程" + (Thread.currentThread() == Looper.getMainLooper().thread))
println("测试开始")
val async = async {
println("测试是否为主线程" + (Thread.currentThread() == Looper.getMainLooper().thread))
println("测试延迟开始")
delay(20000)
println("测试延迟结束")
return@async "666666"
}
println("测试结束")
runBlocking {
println("测试返回值:" + async.await())
}
17:50:57.117 System.out: 测试是否为主线程 true
17:50:57.117 System.out: 测试开始
17:50:57.120 System.out: 测试结束
17:50:57.120 System.out: 测试是否为主线程 false
17:50:57.120 System.out: 测试延迟开始
17:51:17.131 System.out: 测试延迟结束
17:51:17.133 System.out: 测试返回值:666666
看到这里你是否懂了,async 和 launch 还是有区别的,async 可以有返回值,通过它的 await 方法进行获取,需要注意的是这个方法只能在协程的操作符中才能调用
啥?协程有类似 RxJava 线程调度?先用 launch 试验一下
println("测试是否为主线程" + (Thread.currentThread() == Looper.getMainLooper().thread))
println("测试开始")
launch(CommonPool) { // 同学们,敲重点
println("测试是否为主线程" + (Thread.currentThread() == Looper.getMainLooper().thread))
println("测试延迟开始")
delay(20000)
println("测试延迟结束")
}
println("测试结束")
18:00:23.243 System.out: 测试是否为主线程 true
18:00:23.244 System.out: 测试开始
18:00:23.246 System.out: 测试结束
18:00:23.246 System.out: 测试是否为主线程 false
18:00:23.247 System.out: 测试延迟开始
18:00:43.256 System.out: 测试延迟结束
Q:这个跟刚刚的代码有什么不一样吗?
A:当然不一样,假如一个网络请求框架维护了一个线程池,一个图片加载框架也维护了一个线程池.......,你会发现其实这样不好的地方在于,这些线程池里面的线程没有被重复利用,于是乎协程主动维护了一个公共的线程池 CommonPool,很好的解决了这个问题
Q:还有刚刚不是说能线程调度吗?为什么还是在子线程运行?
A:因为我刚刚只用了 CommonPool 这个关键字,我再介绍另一个关键字 UI,光听名字就知道是啥了
println("测试是否为主线程" + (Thread.currentThread() == Looper.getMainLooper().thread))
println("测试开始")
launch(UI) {
println("测试是否为主线程" + (Thread.currentThread() == Looper.getMainLooper().thread))
println("测试延迟开始")
delay(20000)
println("测试延迟结束")
}
println("测试结束")
18:07:20.181 System.out: 测试是否为主线程 true
18:07:20.181 System.out: 测试开始
18:07:20.186 System.out: 测试结束
18:07:20.192 System.out: 测试是否为主线程 true
18:07:20.192 System.out: 测试延迟开始
18:07:40.214 System.out: 测试延迟结束